nierówność dla funkcji między przestrzeniami metrycznymi
Warunek Lipschitza – własność ograniczenia ilorazów różnicowych funkcji; intuicyjnie można powiedzieć, że ograniczona jest szybkość zmian jej wartości. Funkcje spełniające ten warunek nazywa się lipschitzowskimi[1]. Okazuje się, że jest to pewne wzmocnienie ciągłości jednostajnej funkcji.
Dla funkcji spełniającej warunek Lipschitza istnieje podwójny stożek (biały), którego wierzchołek można przesuwać wzdłuż wykresu funkcji, a wnętrze pozostaje rozłączne z tym wykresem.
będą przestrzeniami metrycznymi. Funkcja spełnia warunek Lipschitza ze stałą gdy dla dowolnych zachodzi nierówność
Najmniejszą liczba
dla której powyższa nierówność zachodzi dla wszelkich (o ile istnieje) nazywana jest stałą Lipschitza funkcji Funkcje spełniające warunek Lipschitza ze stałą nazywane są kontrakcjami.
Dowód. Niech będzie funkcją spełniającą warunek Lipschitza ze stałą Niech oraz niech dany będzie Gdy to o ile tylko Rozumowanie to przenosi się mutatis mutandis na funkcje lipschitzowskie działające pomiędzy dowolnymi przestrzeniami metrycznymi.
Niech będzie funkcją różniczkowalną. Wówczas spełnia warunek Lipschitza ze stałą Lipschitza wtedy i tylko wtedy, gdy jej pochodna jest ograniczona przez
Dowód. Załóżmy, że spełnia warunek Lipschitza ze stałą Niech Wówczas dla
Stąd By udowodnić przeciwną implikację, załóżmy, że dla wszelkich Niech Bez straty ogólności, można przyjąć, że Z twierdzenia Lagrange’a o wartości średniej wynika, że istnieje takie że
Ponieważ
co pokazuje, że spełnia warunek Lipschitza ze stałą